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A three-dimensional vortex particle-in-cell method for
vortex motions in the vicinity of a wall
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Chung Cheng Institute of Technology, Taoyuan, Taiwan, Republic of China

SUMMARY

A new vortex particle-in-cell method for the simulation of three-dimensional unsteady incompressible
viscous flow is presented. The projection of the vortex strengths onto the mesh is based on volume
interpolation. The convection of vorticity is treated as a Lagrangian move operation but one where the
velocity of each particle is interpolated from an Eulerian mesh solution of velocity–Poisson equations.
The change in vorticity due to diffusion is also computed on the Eulerian mesh and projected back to the
particles. Where diffusive fluxes cause vorticity to enter a cell not already containing any particles new
particles are created. The surface vorticity and the cancellation of tangential velocity at the plate are
related by the Neumann conditions. The basic framework for implementation of the procedure is also
introduced where the solution update comprises a sequence of two fractional steps. The method is applied
to a problem where an unsteady boundary layer develops under the impact of a vortex ring and
comparison is made with the experimental and numerical literature. Copyright © 2001 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

For many flows, there are distinct rotational and irrotational regions, such as the wake shed
from a body. The vortex particle method (see review articles [1]) allows a ‘compact’ represen-
tation of this type of flow field as computational elements may be concentrated in regions of
rapid spatial variation. This method involves the use of point vortices or filaments to represent
the vorticity field and use related singular functions to approximate solutions of the Navier–
Stokes equations at a relatively small viscosity. From the theorems of Kelvin and Helmholtz,
vortex lines move with the fluid and vortex tubes are of constant strength. The identification
of vortex lines as flow structures with permanent identities naturally leads to a representation
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of the flow as an assembly of vortex lines or filaments. The lines or filaments are obtained by
the discretization of the regions of vorticity in the flow so that this assembly of ‘discrete
vortices’ is often embedded in an irrotational flow. The main advantage of the vortex methods
is that for flows with compact vorticity containing regions no vortices will be needed in the
large irrotational region. Thus, an approximation based on the vortex method reduces the
mathematical description to its essential components and focuses computational resources on
the limited regions of vorticity in the flow rather than on computing the velocity which exists
everywhere.

The vortex method has long been used to model unsteady flow in two dimensions,
particularly since the work of Chorin [2], and three-dimensional extensions have been
considered since the 1980s by others [3–6]. In the two-dimensional case the vortex filaments
are all straight lines normal to the plane of motion and so appear as particles within the plane.
The method thus reduces to discretizing vorticity onto a collection of particles and tracking
their motion in a Lagrangian co-ordinate system. An approximate velocity field is calculated
from the Biot-Savart law. The vorticity field is then evolved in time according to this velocity
field. In three dimensions however, the stretching and tilting of vortex lines means that as well
as computing the motion of the lines account must also be taken of these effects. The first
attempt to simulate a flow by using discrete vortices however was by Rosenhead [7] who
studied the evolution of a vortex sheet. His hand calculations shown the start of a clear rollup
of the vortex sheet, at later times however the motion of the vortices appeared chaotic. This
singularity problem spurred the development of the modern vortex method, beginning with the
computation of flow past a cylinder by Chorin [2]. A Lagrangian procedure based on tracking
vortex filaments was used by Leonard [8] to model the evolution of a turbulent spot in a
laminar boundary layer. The results obtained indicated that the inviscid technique successfully
reproduced many of the features of the turbulent spot. There are difficulties with this
procedure in modeling viscous diffusion, the observed differences between the computation
and the experimental results were attributed to poor handling of viscous effects, and the
absence of a procedure for creating vorticity at the wall. More recently, attention has focussed
on the point vortex representation for three-dimensional flows. In some ways this is an
extension of the two-dimensional techniques and much of the prescriptions developed in two
dimensions for regularizing the singular particles carry over.

In applying the point vortex technique, there is a choice between purely particle-based
treatments for the convection, diffusion, and stretching, and the particle-in-cell (PIC) tech-
nique. The latter procedure offers certain advantages in computational efficiency and in
treatment of viscosity and is the basis of the technique reported here. For a set of N particles,
evaluating the velocity induced at each particle by all the others using the Biot-Savart law has
computational cost of O(N2). Furthermore, the random walk diffusion treatment converges
rather slowly. Efficient parallel implementations [9] reduce the time to compute the velocity
field, however with large numbers of particles reducing the total computational work is
imperative. No-slip boundaries also pose difficulties for particle methods. The vortex PIC
method is computationally efficient and simplifies the boundary condition treatment. In our
previous work [10,11], it has, in two dimensions, proved to be well suited to computations of
unsteady flows. Recently, work [12] has shown the method can be extended to deal with
three-dimensional viscous flows in unbounded domain. In this paper, the method will be
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extended to study three-dimensional wall bounded viscous flows and its application to the
viscous ring–wall interaction problem. Vortex ring–wall interactions have been considered as
useful models in studies of boundary layer instability and turbulence and also occur in a
variety of applications. Furthermore, they pose a challenge for a numerical scheme in that the
numerical procedure has to track the evolution of concentrated vorticity regions that may be
ejected away from the wall. Basically, the flow configuration considered herein is complicated
in nature. The results could help to shed some light on complex phenomenon and the flow
mechanisms involved and serve as a base for further studies on the turbulent boundary layers.

2. MATHEMATIC FORMULATIONS

Taking the curl of the incompressible Navier–Stokes equations leads to the transport equation
for vorticity

���
�t

+u� ·��� =�� ·�u� +��2�� (1)

with the constraint

� ·�� =0 (2)

where �� =��u� is the vorticity and � is the kinematic viscosity.
As the velocity field zero divergence, it may be represented as the curl of a vector potential,

so that a Poisson equation relates the vorticity to the velocity to potential. Then the velocity
is given as

u� (x� , t)=
�

K(x� −x� �)�� (x� �, t) dx� � (3)

where

K(x� )= 1
4� �x� �3

�
�
�
�
�

0 x3 −x2

−x3 0 x1

x2 −x1 0

�
�
�
�
�

(4)

is the Biot-Savart kernel in three dimensions.
In the point vortex method a set of vortex particles is introduced, of intensity (of strength)

kb p, where the pth particle, kb p=�� p�V and �V is an element volume associated with the particle,
Thus

�� (x� , t)=�
p

�� p(t)�V�(x� −x� p(t))=�
p

kb p(t)�(x� −x� p(t)) (5)
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In the pure particle representation, the integral equation (3) reduces to a sum

u� (x� i, t) �
j� i

K�(x� i(t)−x� j(t))kj(t) (6)

where K�(x� )=K(x� )�fr(x� ) with K(x� ) given in Equation (4) and where fr(x� ) is a smoothing
function, equal to unity outside a radius r. Appropriate choices for fr(x� ) are discussed by
Winckelmans and Leonard [6] and Hald [13].

In the vortex PIC method, the strengths of the particles are projected onto the nodes of a
mesh. In the present scheme, this nodal vorticity is computed using volume interpolation. The
velocities at the mesh points are then obtained by solving

�2u� = −���� (7)

A variety of procedures [14–22] have been developed for the velocity–vorticity form of the
equations. Given an initial distribution of vorticity, the evolution of the velocity and vorticity
may be computed by solving Equations (1) and (7) subjected to appropriate boundary
conditions.

3. NUMERICAL FORMULATIONS

3.1. The particle-in-cell method

The vortex PIC method has been successfully used in two-dimensional steady and unsteady
viscous flows for both internal [10] and external [11] bounded domain. The three-dimensional
versions of PIC methods have been developed and used for inviscid [23–25] and viscous [12]
flows. For three-dimensional flows, the vorticity is a vector. This implies that vorticity may be
changed by vortex stretching or diffusion as it moves with the flow and therefore we must
track vorticity as well as the particle positions. In the present PIC method, an initial vorticity
field is discretized as a set of vortex particles, as in the particle methods. The strength of each
particle is projected onto the nodes of a fixed Eulerian mesh, and the contributions summed
to find the mesh vorticity. The velocity field is then calculated by solving Equation (7) on the
mesh, instead of computing the velocity from the Biot-Savart law applied to the set of vortex
particles. Thus the present work, combining the mesh based methods techniques with the
particle formulation is a hybrid method. However, in comparison with the pure particle
method, the mesh effectively smoothes the vorticity over a blob of approximately the cell
dimensions. The projection of the vortex strengths onto the mesh is based on volume
interpolation. The convection of vorticity is treated as a Lagrangian move operation but one
where the velocity of each particle is interpolated from an Eulerian mesh solution of Equation
(7). The change in vorticity due to diffusion is also computed on the Eulerian mesh and
projected back to the particles. Where diffusive fluxes cause vorticity to enter a cell not already
containing any particles new particles are created.
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3.2. Implementation of the PIC method

The basic framework for implementation of the procedure is shown below where the solution
update comprises a sequence of two fractional steps.

3.2.1. Calculations on Eulerian frame

3.2.1.1. Velocity calculation. The Poisson equations of the velocity are solved by a restarted
version of generalized minimal residual method GMRES(m) [26]. Incomplete LU factoriza-
tions [27] are used for preconditioning with scaling by the main diagonal pivots of the
preconditioner, and the Eisenstat procedure [28] is used to compute the preconditioned
matrix–vector multiplication. This Krylov subspace algorithm is an effective iterative method
for solving large sparse non-symmetric problems and has an optimal rate of convergence. The
discretization of the Poisson equations leads to a large system of equations of the form

Ax=b (8)

where x is the unknown vector and b is the known vector. To solve this linear system, a variant
of the preconditioned GMRES is proposed. In the algorithm the two-norm of the residual at
each iteration step is minimized. An orthonormal basis generated by the Arnoldi process and
the Hessenberg least-squares problem can be solved by Householder transformations. The
GMRES(m) algorithm with ILU preconditioner can be summarized as follows.

Algorithm: GMRES(m)-ILU

(1) Start: choose x0 and let b= (I+L)−1b
(2) Iterate: for n=0 until convergence do

t= (I+U)−1xn

u= t+ (I+L)−1((diag(A)−2I)t+xn)
rn=b−u
�n= ��rn ��
�1=rn/�n

for j=1, . . . , m do
t= (I+U)−1�j

u= t+ (I+L)−1((diag(A)−2I)t+�j)
for I=1, . . . , j do

hi, j= (u, �i)
end do
�j+1=u−�i=1

j hi, j�i

hj+1, j=��j+1�
�j+1=�j+1/hj+1, j

end do
solve least-squares problem:
xn+1=xn+�my, where y minimizes ��ne1−Hmy�, y�Rm

and e1= [1, 0, . . . , 0]T

end do

(3) Form the approximate solution: xn+1=D−1/2(I+U)−1xn+1
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3.2.1.2. Vorticity calculation. The vorticity transport equation (1) can be re-expressed as

D��
Dt

=�� ·�u� +��2�� (9)

where Dw� /Dt is the material derivative of the vorticity.
In the present method the vorticity is convected explicitly by the moving particles. Thus the

explicit discretization of the convection term which causes the smearing of flow features in a
purely grid-based method can be avoided. Two alternate forms of the stretching/tilting in
Equation (9) have been considered. One is the transpose scheme [29], the other is the mixed
scheme [30]. The mixed scheme was advocated by Rehbach [30] since the symmetry of the
matrix yields computational savings. In the paper, we adopted the transpose scheme to solve
the vorticity stretching/tilting because it leads to exact conservation of the total vorticity, a
property not satisfied by the classical scheme of the mixed scheme.

3.2.1.3. Wall boundary conditions. To solve for the velocity u� in the computational domain D
from �2u� = −���� , values of u� are required on the boundary �D. It is useful to distinguish
between the treatments of the normal and tangential velocity components. For the normal
velocity components, the boundary conditions may be periodic, Dirichlet, or Neumann, and
are obviously zero Dirichlet values for a solid wall. For the tangential velocities, at a solid wall
it is natural to use Neumann conditions, since this makes relating the surface vorticity to the
no-slip velocity condition quite straightforward. In the following, the discretization of the
Poisson equation for a tangential velocity component near a no-slip wall is examined.
Specifically consider the equation for ux, (dropping suffix x where possible)

�2u= − (���� )x=
��z

�y
−

��y

�z
(10)

with the wall lying in the x–y plane at z=0, corresponding to k=0 on the mesh. A uniform
mesh is considered for simplicity in the discussion, procedures for a stretched mesh being
similar. A collocation point, half a mesh length from the wall, is used in setting the vorticity
boundary condition. With second-order finite differencing in the normal (i.e., k-) direction,
boundary values only enter the discrete equations for k=1, and only in the �2u/�z2 (for u) and
��y/�z (for (���� )x) terms on the left- and right-hand sides respectively. Clearly these terms
must be compatible, and (for simplicity, omitting the discretization of the other terms), we
write

��2u
�x2+

�2u
�y2

��
k=1

+

(ui, j,2−ui, j,1)
�z

−
(ui, j,1−ui, j,0)

�z
�z

=
�y(i, j,2)−�y(i, j,0)

2�z
+

��z

�y
�
k=1

=
�y(i, j,3/2)−�y(i, j,1/2)

�z
+

��z

�y
�
k=1

(11)

Since we require ��u� =�� on �D, in the discrete equations
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−
�uz

�x
�
k=1/2

+
�ux

�z
�
k=1/2

should equal −�y(i, j,1/2). However close to the wall, uz=0 to order (�z)2, and neglecting

−
�uz

�x
�
k=1/2

the discretization of

−
�ux

�z
�
k=1/2

i.e., (ui, j,1−ui, j,0)/�z should equal −�y(i, j,1/2). Assuming this holds we can thus cancel these
terms from each side of the equation. Hence the unknown value of the wall vorticity no longer
explicitly appears in the discretized Poisson equation and the Dirichlet boundary condition for
velocity is effectively replaced by a Neumann condition. The following points arise:

Firstly, the value for the wall vorticity is recovered from the wall velocity condition and with
u(i, j,0)=0, we obtain

u(i, j,1)

�z
=�y(i, j,1/2)=

�y(i, j,1)+�y(i, j,0)

2
(12)

hence the wall vorticity used as boundary condition for diffusion in the transport equation
follows (with general u(i, j,0)) from the O(�z/2) extrapolation

�y(i, j,0)= −�y(i, j,1)+2(ui, j,1−ui, j,0)/�z (13)

Secondly, the discrete equations are unchanged whether a homogeneous Neumann boundary
condition is used or cancellation of the gradient and vorticity boundary conditions in Equation
(7) occurs so in this sense the condition is arbitrary.

Thirdly, for each velocity component, Dirichlet boundary values are applied to at least one
boundary (e.g. where the particular velocity component is either normal to the boundary or
corresponds to an external freestream velocity) so the solution is fully determined in the
problems we consider.

For a no-slip wall, we presented a treatment for the discrete equations using a Neumann
condition on the velocity gradient, rather than Dirichlet values for velocity. The objective is to
use a non-iterative means of setting the vorticity consistent with the no-slip condition. We
argue that for the velocity–vorticity formulation, the natural boundary conditions on the
tangential velocity at a wall are gradient conditions, since the velocity of fluid at the surface
is related to the velocity in the interior of the domain via the vorticity on the surface.

By way of illustration, consider the Stokes problem for the plate, suddenly accelerated to
unit velocity. Let z denote the normal direction, and range from 0 at the plate surface, to H
at the top boundary. In this case, Equation (7) reduces to
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�2u
�z2 =

��

�z

Initially there is no vorticity in the flow, and so the right-hand side is zero everywhere in the
domain [0, H ], except at the boundary. Thus a solution with prescribed boundary conditions
uz=0=1, uz=L=0, and with zero right-hand side gives the incorrect solution u(z)=1−z/H,
inconsistent with the initial conditions. The reason is that we have ignored the wall vorticity
boundary condition required to set the no-slip velocity, and which alters the right-hand side of
Equation (7) at the surface. Including this, and calculating the finite difference solution, the
boundary condition uz=0=1 is re-expressed as du/dz=1/dz, and the right-hand side remains
0 except at the wall, where it becomes 1/dz2. Cancellation of terms on the left- and right-hand
sides at the boundary is equivalent to solving the modified problem

�2u
�z2 =

��

�z

in (0+, H) with the Neumann condition du/dz=0 at 0+. This yields the correct initial
solution u(z)=0 everywhere except at the plate surface, where u=1 from.

For comparison, in the stream function vorticity (�−�) formulation in two dimensions, the
tangential velocity is derived from the normal gradient of �. It is not usual at a wall to employ
the tangential slip velocity (gradient of �) as boundary condition for �2�= −� but rather
�=constant. A stream function vorticity solution may be obtained with a surface gradient
condition but a similar analysis to the above again shows it is required to maintain consistency
between the vorticity boundary conditions and Poisson equation.

3.2.2. Calculations on Lagrangian frame. Having calculated the velocities and vorticities on the
mesh points, these results are interpolated back onto the Lagrangian frame to track the
particles.

3.2.2.1. The particle dynamics. The interpolation scheme used is based on the volume
weighting. The vortices are assigned to the eight surrounding mesh points by projection of the
vortex strengths of the particles in the cell

�� i=kb p Vi

V2 i=1, . . . , 8 (14)

where V=h3 (for a uniform mesh, �x=�y=�z=h).
The vorticity change due to diffusion and stretching on the mesh points is interpolated back

onto the particles by volume weighting. Thus the new strength of a particle is given by

kb p
n+1=kb p

n+ �
8

i=1

��i

Vi

Vti

h3 (15)

where h is the cell size and Vti is the sum of the volumes contributions, Vi from all particles
which contribute to the vorticity at node i. The velocity of the particles is also obtained by the
same interpolation scheme, giving
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u� p= �
8

i=1

u� i
Vi

V
(16)

The particles positions are updated by

x� p
n+1=x� p

n+ (u� p
n) · �t (17)

3.2.3. Outline of the PIC scheme. Initialization

(1) The initial vorticity is first discretized as a set of particles, {kb p
0}

�� 0�{kb p
0}

then the vorticity strengths of the particles are projected onto the mesh, using a volume based
weighting interpolating

{kb p
0}��� i, j,k

0

(2) The velocity components on the mesh are found from

�D
2 u� i, j,k

0 = −�D��� i, j,k
0

where �D
2 and �D are a discrete approximation to �2 and �.

Update

The following sequence advances the flow over one time step:

(3) Interpolate u� p
n from u� i, j,k

n and move particles

x� p
n+1=x� p

n+ (u� p
n) ·�t

(4) Project particle strengths on to the mesh vorticity

�� i, j,k* =P{kb p
n(x� p

n+1)}

(5) Solve for the diffusion and stretching of vorticity on the mesh

�� i, j,k
n+1−�� i, j,k*

�t
=LD(�� i, j,k

n )+LS(�� i, j,k
n )=��� n+1/�t

where LD and LS are the discrete diffusion and stretching operators and level * corresponds to
an intermediate time level.

(6) Backproject the change in nodal voriticity (B{��� }) to particles
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{kb p
n+1(x� p

n+1)}={kb p
n(x� p

n+1)}+B{��� i, j,k
n+1}

(7) Create new particles on empty nodes, if vorticity� tolerance

{kb p
n+1}�{kb p

n}�{kb p
c}

where kb p
c are newly created particles.

(8) Solve for the velocity field which corresponds to the new vorticity field

�D
2 u� i, j,k

n+1= −�D��� i, j,k
n+1

(9) Set vorticity boundary condition

�� i, j,k
n+1�surface=�D�u� i, j,k

n+1

4. NUMERICAL RESULTS

4.1. Validation of the method

In the numerical test case, the solutions of an incompressible viscous fluid in a square and
cubic cavity where the top wall is driven by a constant velocity U0=1 are presented. The
comparison of the values of velocity extrema along the centerlines of the cavity, the vorticity
at the center of the cavity, and the vorticity at location x=0.5 on the moving wall, with the
numerical result [31,32] for various Reynolds numbers are provided in Table I. Table II gives
the properties of the primary vortex. For the cubic cavity flows, computational results for the
Reynolds results 100 and 400 are reported, and compared with the results of References
[21,33]. The comparisons of the position of the vortex core in the y–z plane at x=0.5 is listed
in Table III. It is clear that the present results are in good agreement with the benchmark
results.

Table I. Comparison of some characteristic values of the cavity flow

Re=100 Re=1000

Present Ref. [31] Ref. [32] Present Ref. [31] Ref. [32]

0.213 0.2109uxmax 0.2140 0.348 0.3829 0.3886
0.456 0.4531 0.4581zmax 0.172 0.1719 0.1717

uzmax 0.179 0.1753 0.1796 0.373 0.3710 0.3770
0.762 0.7656 0.7630 0.842 0.8437 0.8422xmax

1.171 — 1.1744� (0.5, 0.5) 2.059 — 2.0672
6.567 6.5745� (0.5, 1.0) 6.5641 14.87 14.8901 14.7534
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Table II. Comparison of the center (x, y) of the primary vortex and its
streamfunction � and vorticity �

Re=100 Re=400 Re=1000

Present Ref. [31] Present Ref. [31] Present Ref. [31]

−0.104� −0.1034 −0.114 −0.1139 −0.118 −0.1179
3.176 3.1665 2.296� 2.2947 2.053 2.0497
0.618 0.6172 0.555 0.5547 0.533 0.5313x
0.735 0.7344 0.606 0.6055 0.565y 0.5625

Table III. Comparison of the location of vortex core for three-dimensional
lid-driven cavity flows in the y–z plane at x=0.5

Re=100 Re=400

Present Ref. [31] Present Ref. [21] Ref. [33]

0.5 0.5 0.51x 0.5 0.5
y 0.31 0.30 0.18 0.197 0.172
z 0.36 0.36 0.23 0.227 0.220

4.2. Application of the method: normal impingement of a �ortex ring on a wall

The normal impingement of a laminar vortex ring on a solid surface has studied experimentally
and analytically by Walker et al. [34] and more recently experimentally by Chu et al. [35]. In
a numerical simulation, Orlandi and Verzicco [36] have presented detailed computational results
by solving the Navier–Stokes equations and comparing with some of the experimental
observations of Walker et al. [34]. The characteristics of a ring depend primarily on its diameter
D0 and either the propagation velocity V0 or circulation �0; thus the ring Reynolds numbers
may be defined either in terms of an initial diameter and velocity, Re�=V0D0/� or circulation
Re�=�0/�. The behavior of a ring also depends on the distribution of vorticity within the core.
Walker et al. [34] assumed a circular core of Kelvin Hicks type, as does Reference [36], whilst
the measurements of Chu et al. [35] suggested a degree of ellipticity under experimental
conditions. Chu et al. [35] find Re�=2.4Re�, whilst in choosing r0=0.59 cm, a/r0=0.413 and
r0a

2=0.0333 cm3, to match the conditions of References [34,36] find Re�=2.32Re�.
Boundary layer response : One of the first experimental investigations that interpreted the

rebound of a trailing vortex from a solid surface was that of Harvey and Perry [37]. We had
studied the vortex dipole rebound from a solid surface [12] and obtained good agreement
between experiments and numerical results. The results showed how the boundary layer induced
by the vortex dipole separated and how this separated layer finally rolls up to form a secondary
vortex dipole with opposite vorticity from that of the vortex dipole.

The explanation of Harvey and Perry [37] was extended for the normal ring–wall impinge-
ment [34]. As shown by Walker et al. [34], when the vortex ring approaches the wall, it induces
a surface boundary layer, which undergoes separation and explosive growth, leading to the
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ejection of vorticity. The ejected (secondary) vorticity is oppositely signed to that of the
primary ring and rolls up into a secondary ring in analogous fashion to the dipole case. The
secondary ring rolls around and over the primary ring until it is inside it and at sufficiently
high Reynolds number it is later ejected from the surface. Before this final stage again at a high
enough Reynolds number a tertiary ring also rolls up from the surface and interacts with the
secondary ring. For Re��1000, the secondary ring becomes unstable with azimuthal distur-
bances amplifying. Walker et al. [34] consider in detail rings with Re� of 564 and 1250, Orlandi
and Verzicco [36] simulates a ring with Re�=1250, and Chu et al. [35] provide experimental
results for Re� approximately 750. In all of the cases studied, the complex process of vortex
induced separation develops from the narrow band of boundary layer vorticity produced by
the wall no-slip condition as the vortex ring approaches a solid wall.

4.2.1. Initial discretization of a �ortex ring. The details that are common to all undisturbed ring
computations presented in the paper are given in Reference [13]. For the instability investiga-
tions of the disturbed vortex ring a sinusoidal perturbation in the radial direction was added.
Thus, the vortex particles positions are functions of the angle � and 	, i.e.

x� (�, 	)=

�
�
�
�
�

Rs cos �

Rs sin �

0

�
�
�
�
	

(18)

where Rs=Rm+
 sin � and Rm=R+rc cos 	.

�=k� (19)

where k is wave number and 
 is the amplitude of the perturbation. The new vorticity vector
is chosen normal to the cross section, thus the orientation n� is given by

n� (�, 	)=

dx� (�, 	)
d��dx� (�, 	)
d�

� (20)

n̄(�, 	)=
1
q

�
�
�
�
�

−Rl sin �−
 sin � sin �+� cos �cos �

Rl cos �+
 cos � sin �+� sin � cos �

0

�
�
�
�
	

(21)

where q=	Rl
2+�2+�2Rl 
 sin �+
2(1−k2)sin2 �.

In three dimensions, each vortex particle has to be assigned a volume. Thus

d�=
� �2

� 1

� 	2

	 1

� r2

r 1

Rs d�(r d	) dr (22)
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vol= (r2−r1)

�
�
�
�
�

(	2−	1)�� · R
�r2+r1

2
�

+��(sin 	2−sin 	1)�r1
2+r1r2+r2

2

3
�

−

(	2−	1)

n
�r2+r1

2
�

(cos �2−cos �1)

�
�
�
�
�

(23)

Finally, the intensity of vorticity of each vortex particles is given by

kb p=2�R�
Ntot

(24)

4.2.2. Weak rings (Re��1000). For the first computations, the ring at Re� of 750 was
considered. The ring is described by 100 sections, each of 200 particles, projected onto a
128×128×200 mesh, exponentially stretched near the wall. The initial data were made to be
close to the experimental results but an exact match is difficult when in the computation the
ring is suddenly inserted close to the wall. The initial vorticity distribution for the simulation
at Re�=750 is shown in Figure 1(a). The physical dimensions of the computational domain
were 128×128×102 mm in streamwise, spanwise and normal directions respectively. Figure
2 compares the visualization results of Chu et al. [35] with the computed vorticity contours at
similar stages ending at the ejection of the secondary ring. The peak vorticity in the latest stage
shown is approximately 12 in both primary and secondary vortices in reasonable agreement
with the measurements [35].

For a second computation the initial condition was changed slightly to a more elliptical
section and (with ‘a ’ representing the semi-minor axis of the core rather than the radius) the
ratio a/r0=0.413. The initial vorticity distribution in shown in Figure 1(b). An exponentially
stretched mesh of 128×128×200 was used again with 100 sections to define the ring. The
physical grid spacing for the computation was �x=�y=1.5 mm, the center was at
(x0, y0, z0)= (3D0, 3D0, 1.5D0), and after an initial 100 time steps with �t=0.01 s, �t was
reduced to 0.003 s. Marker particles were placed at four sections (0, 90, 180, and 270°) in the
ring core to simulate the experimental dye. By measuring the propagation velocity, this ring is
found to have the slightly different Re� of 840.

Figure 3 shows the evolution of the vorticity contours. The enlargement of the vorticity
contours at times t=0, 0.9, 2.1 and 3.6 s are shown in Figure 4. When the primary vortex ring

Figure 1. The initial vorticity distribution of ring at (a) Re�=750, (b) Re�=840.
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Figure 2. Viscous rebound of a vortex ring from a solid wall. Comparison between (a) visualization
results of Chu et al. [35] (PVR: primary vortex ring), (b) the present numerical results.

approaches the wall, a thin vorticity layer is generated at the wall to counter the velocity
induced by the primary vortex ring at the surface. As the primary ring gets closer to the solid
wall, the induced vorticity layer strengthens. The definition of t=0 for the ring–wall
interaction is somewhat arbitrary and we simply reference the computed results to the first
figure in Figure 3 where the ring has approximately stopped. At t=0.9 s, the vorticity layer
lifts up and slows the radial motion of the primary ring. With time increasing, this raised
vorticity layer rolls up and forms a secondary ring. At later stages of the mutual interaction
of these two rings, the secondary ring moves in a circular trajectory and eventually moves into
the interior space surrounded by the primary ring. Isovorticity surfaces, for �� �=1.0, are
shown in Figure 5 for the latest time shown in Figure 3. The surfaces are coded according the
orientation of the azimuthal vorticity and the primary (dark), secondary and tertiary (light)
rings are shown.

In order to examine the comparison with the experimental results [34], we run the test case
with the Reynolds number, Re�=564. The physical dimensions of the computational domain
were (70.8, 70.8, 47.2) mm, in x-, y- and z-directions respectively. The center of the ring is
(x0, y0, z0)= (35.4, 35.4, 11.8) mm. Marker particles were placed at two sections (0 and 180°) in
the core to simulate the experimental dye.

A time sequence of the positions of the marker particles which show the vortex ring rebound
from the wall at Re�=564 is given in Figure 6. Comparison of the results for marker particle
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Figure 3. The evolution of vorticity contours for normal impingement of a vortex ring on a wall at
Re�=840.

position with the experimental visualization results [34] shows good agreement. Figure 7 shows
a comparison for the trajectory of the center of the primary ring core at Re�=564 with the
experimental [34], numerical [36] and the present results. The agreement is again quite good.

As the vortex ring approaches the solid wall a vorticity layer is induced which has an
opposite circulation to that of the primary ring. Cancellation of the vorticity by diffusion
between the edge of the induced boundary layer and the primary ring results in the decrease
of the circulation of the primary ring. With time increasing, the circulation of the primary ring
gradually decreases and by t=0.25 s the diameter of the vortex ring has increased significantly
implying that the core has undergone considerable stretching. At this stage, the separation of
the boundary layer causes the induced surface vorticity layer to lift up from the wall and form
a secondary ring. At t=0.75 s the radial outward motion of the primary ring is slowed
eventually causing the characteristic kink in the trajectory of the core (Figure 7). In the
meantime, the primary ring which is orbited by the secondary ring, rebounds a little from the
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Figure 4. Contours of vorticity for normal impingement of a vortex ring on a wall at Re�=840.

Figure 5. Isovorticity surface �� �=1.0 for normal ring impact on a wall at Re�=840.
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Figure 6. Vortex ring impacting a wall at Re�=564. (a) The present PIC results, computation visualized
by placing marker particles at zero degree of the vortex ring and (b) the experimental results of Walker

et al. [34].
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wall. The radial displacement of the primary ring is thus halted whereas for inviscid flow it
would increase continually.

At the stages of t=1.0, 1.25, and 1.5 s the secondary ring rolls up and over the primary ring.
At t=1.5 s the trajectory of the ring core reaches it highest position. In succeeding stages, the
secondary ring moves towards the center of the primary ring. At t=1.75 s the primary and
secondary rings both approach the wall. At this stage, the position of the ring core drops
down. At t=2 s the primary ring is closest to the wall again and it induces a further separation
and boundary layer eruption in the form of a tertiary vortex which causes a secondary rebound
of the primary vortex. From Figure 7, the present numerical simulation captured this
phenomenon quite clearly.

Comparison of the present results (Figure 6) with Walker’s results for this stage (i.e., t=2
s) show the primary vortex ring is closest to the wall for both results. At t=2.25, 2.5 and 2.75
s the primary ring undergoes a second rebound from the wall (Figure 7(c), (d)).

4.2.3. Strong ring (Re��1000). The case of Re�=1250 was also simulated using the same
computational domain and conditions as Re�=564. Comparison of the numerical results
(Figure 8) with the visualization results [34] again show good agreement. The experiment
shows that instabilities develop and the flow is no longer axisymmetric at higher Re. To
perform fully three-dimensional simulations and to study the development of the azimuthal
instabilities for a vortex ring impacting a solid wall an initial radial disturbance has been
imposed on the vortex ring with wave number n=5 and amplitude 
=0.02r0.

This perturbation is similar to that used by Knio and Ghoniem [6] for the case of free rings.
The ring is described by 300 sections each of 841 particles with a0=0.24 cm whilst the ring
radius was set to be 0.59 cm.

Figure 7. The trajectory of the center of the primary ring at Re�=564. (a) Experimental result of Walker
et al. [34], (b) numerical result of Orlandi and Verzicco [36], (c) and (d) present results.
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Figure 8. Vortex ring with disturbance impacting a wall at Re�=1250. (A) and (B): computation
visualized by placing marker particles in vortex ring. (C) and (D): computation visualized by placing a

layer of marker particles near a wall. Results are 0.166 s apart.
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To visualize the vortex ring, impact marker particles are placed on the vortex ring and a
layer of marker particles is also placed near the wall. The evolution of the vortex ring with a
disturbance is shown in Figure 8(A) and (B) for marker particles placed in the core, whilst the
results for the layer of marker particles near the surface is shown in Figure 8(C) and (D) and
may be compared with the corresponding experimental results [34]. From Figure 8, wavy
instabilities are observed to occur in the secondary vortex ring (t=0.332 s, side view). As time
increases, the amplitude of the azimuthal waves also increases and three-dimensionality
becomes more pronounced. The azimuthal instabilities were observed clearly in the secondary
vortex ring, as shown in Figure 8, where the detailed structure of the wave instability of the
primary vortex is not so visible. To visualize more clearly the wave instabilities of the primary
vortex ring, marker particles are placed on two circles of the ring with radius r0 and r0+a (i.e.,
Figure 9, dark and light circle) respectively. The light circle of marker particles rotates about
the black center core circle and for t=0.166 s (corresponding to the second frame in Figure
9) it is seen to lie on the surface. The expansion of the core of the primary ring is also quite
clear and the frames clearly show that the disturbance to the center of the ring rotates about
the ring axis. Hence, the disturbance appears to have vanished, but in the elevation view (on
the right) we can see that at this instant, the disturbance is mostly in the vertical plane. In the
next frame of the simulation, the disturbance has amplified and in the following one, t=0.664
s, the outer circle of markers is being swept around by the nearby loops of concentrated
vorticity which develop in the secondary ring. The third and fifth frames of Figure 8 also show
the development of strong wavy disturbances in the secondary ring from about t=0.332 s.
They also show the concentrations of particles in patches in the space within the primary ring
as the loops develop in the secondary ring. Walker et al. [34] showed in their experiments that
the instability in the secondary vortex ring ultimately induces an apparent waviness in the
primary ring. They also showed that the instability appears to be initiated in the secondary
ring and to be associated with compression of the primary ring. The computed results (Figures
8 and 9) are in good agreement with the description of the wave instability of Walker et al.
[34]. We also observed the occurrence of kink phenomena between the primary and secondary
vortex ring. The interactions of secondary, tertiary and primary rings lead to the kink
instabilities. Figure 10 shows the isovorticity surface of �� �=4 at t=0.664 s after impact,
clearly showing this occurring.

5. CONCLUSIONS

In three-dimensional flow, not only are mesh solvers based on vorticity formulations less
frequently applied than those using primitive variable formulations, but vortex particle
methods are even less used, although they have useful potential. This paper describes a new
vortex PIC method and solution algorithm along with details of the numerical implementation
for the simulation of unsteady incompressible viscous wall-bounded flow and its application to
the vortex ring–wall interaction problem. The procedures to treat viscous diffusion and
stretching/tilting were described and it was shown how surface boundary conditions, in
particular the generation of vorticity, can be incorporated in a convenient manner.
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Figure 9. Vortex ring with disturbance impacting a wall at Re�=1250, computation visualized by placing
marker particles in two circles of ring with radius r0 (dark) and r0+a (light): (a) top view, (b) side view.

Results are 0.166 s apart.
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Figure 10. Isovorticity surface �� �=4.0 for normal ring impact on a wall at Re�=1250.

The normal impingement of a vortex ring on a wall was studied for both weak rings and
strong rings. With the normal ring impact on a solid wall, the present numerical results were
in good agreement with those of the experimental and numerical literature. The formation of
the secondary and tertiary rings was discussed, and these were clearly illustrated by plotting
isosurface of vorticity for the Re=840 case. The trajectories of the center of the ring core also
gave good agreement with the experimental and numerical results at Re=564. A fully
three-dimensional case was simulated by imposing a radial perturbation on the vortex ring. It
was found that the use of marker particles placed on the core and a near wall layer
respectively, and in two circular filaments in the ring, were useful in studying the resulting
flow. The results showed the development of the azimuthal instabilities in the secondary vortex
ring, which amplified the wavy instability in the primary vortex ring. Generally speaking, the
vortex PIC method performs well in predictions of the vortex–wall interaction problems for
three-dimensional flow configurations.
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